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In the paper we have constructed and investigated some properties of the Perelo-
mov’s “generalized coherent states” and photon-added coherent states for the Morse one-
dimensional Hamiltonian (MO-PACSs), using the SU(2) group generators. We have found
the integration measure in the resolution of unity and we have calculated some expectation
values in the MO-PACSs representation. Using these states, the diagonal P-representation
of the density operator is constructed as a new result for Morse potential. In addition, we
have calculated some thermal expectation values for the quantum canonical diatomic gas
of the Morse oscillators.
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1 Introduction

Among many models for the internuclear potential of the diatomic molecule, a
particular role is given to the one-dimensional non-rotational Morse Hamiltonian
proposed by Morse [1]:

HM(r) = − h̄2

2µ
d2

dr2
+De

[
1− e−α(r−re)

]2
, (1)

where r represents the internuclear distance, re is the equilibrium internuclear sep-
aration of the system of two nuclei in the diatomic molecule, µ the reduced mass,
α the Morse constant of anharmonicity, and De the dissociation energy of the di-
atomic molecule (i.e. the depth of the potential energy well). The Morse potential
is one of the most simple and “realistic” three-parameter anharmonic potential
models, particularly used in specific calculations in spectroscopy [2], in diatomic
molecule vibration and scattering [3–5], and in other fields (e.g. in the description
of vibrations of polyatomic molecules by representing each bond in the molecule by
a Morse potential [6]). So, the Morse potential [1] has proven to be very useful for
solving various problems from diverse fields of physics and chemistry.
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This potential has been the subject matter of several algebraic investigations.
The SU(1, 1) symmetry has been used by several authors [7, 8], also the raising
and lowering operator formalism [9–14] or supersymmetric quantum mechanics
(SUSYQM) technique [15, 16]. The SU(2) model has also been used for the problem
of the coupling Morse oscillators [17]. The Green’s function for the Morse oscillator
was calculated in the noncompact group SO(2, 1) ∼ SU(1, 1) algebraic approach
[18], based on the application of the Fourier transformation of the corresponding
density matrix [19].
The coherent states of the Morse potential have also been examined by several

authors, beginning from Nieto and Simmons Jr. [10, 20] into the general context
of the construction of analytic coherent states for generalized potentials. Gerry
[21] has constructed the SO(2, 1) coherent states for the Morse oscillator and has
written the Green’s function as a path integral over the SO(2, 1). Also, the coherent
states of the Morse oscillator, using a new analytical method for the calculation
of creation and annihilation operators, were established in [22, 23]. Recently, the
Gazeau–Klauder coherent states for the Morse potential and the Barut–Girardello
coherent states for this potential based on the Lie algebra U(1, 1) have been carried
out [24, 25]. Statistical properties of the Gazeau–Klauder quasi-coherent states, or
the Klauder–Perelomov coherent states for the Morse potential were the subject
matter of two recent works [26, 27].
The arguments for such an increasing interest for the Morse potential generally,

and for the construction of the coherent states of the Morse oscillator especially, in
our opinion, are the following: (a) the Morse potential allows an analytical solution
of the Schrödinger equation and is characterized by a finite number (denoted here
by [N/2], where N is a constant which characterizes the potential shape of the
Morse oscillator, as we can see below) of bound states (where [x] represents the
integer part of x); (b) theoretical spectroscopic results obtained by using the Morse
potential in the case of vibrational motion of diatomic [28] (as well as polyatomic
[6, 29]) molecules, and also in the case of molecular interactions, agree well with
experimental spectrum [30]; (c) the systematic analysis of transition intensities and
Franck–Condon factors are also possible [31, 32].
Our aim is to construct the Perelomov’s “generalized coherent states” for the

Morse potential beginning from the connection between the SU(2) model and the
one-dimensional Morse system [17, 33], and also the photon-added coherent states
and to show that, at the harmonic limit of the Morse oscillator (N → ∞), all
obtained results lead to the corresponding results for the harmonic oscillator.

2 Morse−Hamiltonian factorizability versus the SU(2) model

The factorization method was first proposed by Schrödinger [34], and then gen-
eralized by Infeld and Hull [35] and others [36]. This algebraic technique consists
in replacing a certain second-order differential operator (as it is, in our case, the
Hamilton operator) with two equivalent products of first-order operators. As a con-
sequence, the factorization method leads to raising and lowering operators. On the
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other hand, this method was a starting point for the introduction of supersym-
metric quantum mechanics (SUSYQM) [37], or for the combination of elements of
various methods of solving the Schrödinger equation (SUSYQM, algebraic tech-
niques and special-function theory) for exactly solvable one-dimensional potentials
of non-relativistic quantum mechanics [38].
The aim of this section is to factorize the Morse Hamiltonian (1) in such a

way that it can be compared with the factorization in terms of angular momentum
generators [17, 33]. This will allow the construction of new coherent states for the
Morse oscillator. If we perform the variable change x = r − re, y = Ke−αx, and
K ≡

√
8µDe/(αh̄), the Morse Hamiltonian (1) becomes

HM(y) = − h̄2α2

2µ

(
y
d
dy

)2

+De −
2De

K
y +

De

K2
y2. (2)

Using the factorization method [9, 37], we factorize the Morse Hamiltonian as

HM = A+A− +A−A+ , (3)

where A± are first-order differential operators of the form

A− = a1y
d
dy
+ b1y + c1 , A+ = a2y

d
dy
+ b2y + c2 , (4)

which play the role of raising and lowering operators on the vibrational quantum
number v. After the straightforward calculations, we obtain

A− =
1√
2

h̄α√
2µ

(
−y

d
dy

− 1
2
y +

K

2

)
, A+ =

1√
2

h̄α√
2µ

(
y
d
dy

− 1
2
y +

K

2

)
. (5)

Following the Refs. [17, 32, 33], we rewrite the Morse Hamiltonian as follows:

HM = 1
2 h̄ω0 (b+b− + b−b+) , (6)

where we have introduced the new ladder operators

b− =
√

2
h̄ω0

A− =
1√
2
α

√
h̄

µω0

(
−y

d
dy

− 1
2
y +

K

2

)
, (7)

b+ =
√

2
h̄ω0

A+ =
1√
2
α

√
h̄

µω0

(
y
d
dy

− 1
2
y +

K

2

)
(8)

with the fundamental vibration frequency of the Morse oscillator: ω0 = α
√
2De/µ.

The Schrödinger equation for the Morse Hamiltonian (1) can be solved exactly.
The eigenfunctions are [1, 3, 39, 40]

Ψv(y) ≡ 〈y|v〉 =
[
α(K − 2v − 1)v!
Γ(K − v)

]1/2

e−y/2y(1/2)(K−2v−1)LK−2v−1
v (y), (9)
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while the energy levels are given by

Ev =
4De

K

(
v +

1
2

)
− 4De

K2

(
v +

1
2

)2

. (10)

We now recall some properties of the SU(2) model, closely related with the
Morse potential. It is known from the Refs. [17, 33, 41] that the anharmonicities
induced by molecular potentials, such as the Morse and Pöschl–Teller, can be de-
scribed by SU(2) algebra, which can be constituted by the following raising, low-
ering and z-component operators

[Jz , J±] = ±J± [J+, J−] = 2Jz . (11)

The Hamiltonian HSU(2) (called “SU(2) model”) is given by [17, 33, 41]

HSU(2) =
A

N
(J2 − J2

z ) =
A

2N
(J+J− + J−J+) , (12)

where A and N are two constants whose physical interpretation will be carried out
later. It is diagonal in the |jm〉 basis, where j and m are the quantum numbers
that characterize the eigenvalues of the J2 and Jz , respectively. The eigenequation
of the HSU(2) operator is

HSU(2)|jm〉 = A

N
[j(j + 1)−m2]|jm〉. (13)

The above eigenvalues can be identified, up to an insignificant constant, with
the energy eigenvalues (10) of the Morse oscillator potential, if we fix the following
values of the quantum numbers: j = [N/2], where v = j−m = 0, 1, 2, . . . , [N/2] and
the newly introduced quantum number v corresponds to the number of vibrational
quanta in the Morse oscillator. So, in the new denotation of the basis |jm〉 ≡
|[N/2], v〉, the eigenvalues of the HSU(2) Hamiltonian are given by

Ev = − A

4N
+A

N + 1
N

(
v +

1
2

)
− A

N

(
v +

1
2

)2

. (14)

If we compare this equation with the Morse eigenvalue equation (10), we see
that the above eigenvalues are similar, up to an insignificant constant, to the Morse
eigenvalues. In other words, the eigenvalues (14) correspond to the displaced Morse
potential

H
(d)
M = HM +E(d) ≡ HSU(2) (15)

if we perform the following identification:

A =
4De

K

1

1 +
1
N

= h̄ω0
1

1 +
1
N

, E(d) = −De

K2
= − h̄2

2µ

(α
2

)2

. (16)
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Here we have used Child’s parameter K [29] defined by K = N + 1.
So, except an unimportant constant term in equation (14), the Morse energy

spectrum and the energy spectrum of the HSU(2) Hamiltonian are the same. They
are the two sides of the same coin. This leads to the idea that there also is, a
connection between the two sets of operators, b± and J±. This connection is [17]

b− =
1√
N

J+ , b+ =
1√
N

J− . (17)

The operators (J+, J−, Jz) of the angular momentum satisfy the well-known
equations

J±|jm〉 =
√

j(j + 1)−m(m± 1)|jm± 1〉 , Jz |jm〉 = m|jm〉 . (18)

Consequently, the operators b± act on the eigenstate |j = [N/2] , v = j −m〉 ≡
| [N/2] , v〉 also as the raising and lowering operators of the angular momentum
kind, i.e.,

b−|
[
1
2N

]
, v〉 =

√
v

(
1− v − 1

N

)
|
[

1
2N

]
, v − 1〉 , (19)

b+|
[
1
2N

]
, v〉 =

√
(v + 1)

(
1− v

N

)
|
[

1
2N

]
, v + 1〉 . (20)

Accordingly, the ground state correspond to m = j = [N/2] and the bounded
states of the Morse oscillator correspond to the positive branch of the irreducible
representation with j = [N/2], i.e. for m = 0, 1, . . . , [N/2].
Defining the diagonal operator [17]

v̂ ≡ 1
2N − Jz = 1

2N (1− [b−, b+]) , (21)

it is easy to prove that v̂ plays the role of number particle (vibrational quanta)-
operator:

v̂|
[

1
2N

]
, v〉 = v|

[
1
2N

]
, v〉 . (22)

Before ending this section let us examine the exact wording of the harmonic
limit of the Morse oscillator. We have proved that this requires the simultaneous
(or correlated) prosecution of the following limiting operations [42]:

lim
MO→HO

≡



De → ∞,

K → ∞,

α → 0,
De

K
= 1

4 h̄ω0,

Deα
2 = 1

2µω
2
0,

Kα2 = 2
µω0

h̄
.

(23)
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The harmonic limit of the raising and lowering operators of the Morse potential
(7) and (8) can be deduced in the manner indicated below. Firstly, we pass to the
variable x:

b+ =
1√
2

√
h̄

mω0

[(
αy
d
dy

)
− α

2
y +

Kα

2

]
=

1√
2

√
h̄

mω0

(
− d
dx

− Kα

2
e−αx +

Kα

2

)
. (24)

Then we perform a series development of the exponential function up to the
linear term of the variable x [42]

1
2Kαe−αx ≈ 1

2Kα− 1
2Kα2x . (25)

Performing the limiting operations (23), we obtain

lim
MO→HO

b+ =
1√
2

(
−
√

h̄

mω0

d
dx
+
√

mω0

h̄
x

)
≡ a+ (26)

and, similarly,

lim
MO→HO

b− =
1√
2

(√
h̄

mω0

d
dx
+
√

mω0

h̄
x

)
≡ a , (27)

i.e., we have obtained the creation and annihilation operators of the one-dimensional
HO.
In addition, in terms of Eq. (20), the Morse wave function can be taken as

Ψv(y) =

√
Nv(N − v)!

v!N !
(b+)vΨ0(y) , (28)

where Ψ0(y) is the ground state of the Morse wave function

Ψ0(y) =
√

α

(N − 1)!e
−y/2yN/2 . (29)

On the other hand, the harmonic limit of the Morse wave function is given by

lim
N→∞

Ψv(y) =
1√
v!
(a+)v φ0(y) , (30)

where φ0(y) is the ground state for the harmonic oscillator.

3 Coherent states for the Morse oscillator

With the previous considerations, let us begin from the definition of the Perelo-
mov’s “generalized coherent states” by means of normally ordered displacement
operator [43, 44]

|ζ;
[

1
2N

]
〉 = exp [ζJ+ − ζ∗J−] |

[
1
2N

]
, 0〉. (31)
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Using a well-known disentangled formula [43, 44]:

exp [ζJ+ − ζ∗J−] = eηJ+ eln(1+|η|2)Jz e−η∗J− (32)

and passing to the operator b+ (see Eq. (17)), we are lead to the following definition
of the coherent states for the Morse oscillator (MO-CSs):

|z;
[
1
2N

]
〉 =

[
N (|z|2)

]−1/2
exp [zb+] |

[
1
2N

]
, 0〉 , (33)

where we have used a new complex variable: z = −η
√
N = −

√
N(ζ/|ζ|) tan |ζ| ≡

|z|eiϕ = reiϕ.
Using Eq. (20), it is not difficult to prove that we have

|z;
[
1
2N

]
〉 =

[
N (|z|2)

]−1/2
[N/2]∑
v=0

zv√
ρ(v;N)

|
[
1
2N

]
, v〉 , (34)

where the positive quantities are defined as follows:

ρ(v;N) = Nv Γ(v + 1)Γ(N + 1− v)
Γ(N + 1)

. (35)

We point out here that we have written the normalized vacuum and a certain
state of the finite-dimensional Fock space F [N/2] as |[N/2], 0〉 and |[N/2], v〉, respec-
tively, instead of |0〉 and |v〉 in order to emphasize the representation [N/2] of the
SU(2) group. We shall also extend this manner of notation to the coherent states
(CSs).
From the normalization to unity of the CSs we obtain that the normalization

constant is

N (|z|2) =
[N/2]∑
v=0

(|z|2)v
ρ(v;N)

, (36)

which is a polynomial of degree [N/2] with the positive coefficients.
Let H[N/2] be a finite-dimensional subspace of the Hilbert space H, which

is spanned by the complete orthonormal set of [N/2] + 1 states |[N/2], v〉 (v =
0, 1, 2, . . . , [N/2]) [3]. Then, the projection operator on the subspace H[N/2] is

[N/2]∑
v=0

|
[
1
2N

]
, v〉〈

[
1
2N

]
, v| = Î[N/2] . (37)

Resolution of the identity in terms of a certain set of states is very important
property, because it allows the practical use of these states as a basis in the Hilbert
space [45]. The resolution of the unity in terms of the MO-CSs can be performed
in the following manner:∫

dµN (z)|z;
[
1
2N

]
〉〈z;

[
1
2N

]
| = Î[N/2], (38)
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where Î[N/2] is the projection operator (see Eq. (37)).
In order to determine the unknown integration measure dµN (z), we must re-

member that, at the harmonic limit of the Morse oscillator N → ∞, this mea-
sure must lead to the well-known integration measure of the usual one-dimensional
harmonic-oscillator coherent states (HO-CSs):

lim
N→∞

dµN (z) =
d2z

π
=
dϕ
π
dr r . (39)

This fact, as well as the proper structure of the MO-CSs, leads to the following
expression of the integration measure dµN (z),

dµN (z) =
dϕ
π
dr r h(r2)N (|z|2) , (40)

where the unknown function h(r2) must be determined.
By substituting Eq. (40) into Eq. (38) we obtain

[N/2]∑
v,n=0

|
[

1
2N

]
, v〉〈

[
1
2N

]
, n|

ρ(v;N)ρ(n;N)

∫ ∞

0

dr r h(r2)
∫ 2π

0

dϕ
π
(z∗)nzv = Î[N/2] . (41)

Here and below, all integrals are performed over the whole complex z-plane,
where z = r exp (iϕ), r ∈ [0,∞), ϕ ∈ [0, 2π], d2z = d(Re z)d(Im z) = dϕdr r.
After performing the angular integration, i.e.,∫ 2π

0

dϕ
π
(z∗)nzv = rn+v

∫ 2π

0

dϕ
π
ei(v−n)ϕ = 2r2vδvn , (42)

Eq. (41) becomes

2
[N/2]∑
v=0

[
1

ρ(v;N)

∫ ∞

0

dr r2v+1 h(r2)
]
|
[

1
2N

]
, v〉〈

[
1
2N

]
, v| = Î[N/2] . (43)

When we perform the variable change r2 = x and extend the natural values of
v to complex s so that v → s − 1, the integral from the above equation is called
the Mellin transform [46, 47]∫ ∞

0

dxxs−1h(x) =
1
N

1
Γ(N + 1)

1
N−s

Γ(s)Γ(N + 2− s) . (44)

From the definition of Meijer’s G-function and Mellin’s inversion theorem, we
have [46] ∫ ∞

0

dxxs−1Gm,n
p,q

(
αx

∣∣∣∣∣ a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

)
=

=
1
αs

∏m
j=1 Γ(bj + s)

∏n
j=1 Γ(1− aj − s)∏q

j=m+1 Γ(1− bj − s)
∏p

j=n+1 Γ(aj + s)
. (45)
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In the above equation the argument of G-function is αx, where α is a real or
complex constant, while aj (j = 1, . . . , p) and bh (h = 1, . . . , q) are real or complex
numbers such that aj − bh �= 0, 1, 2, . . . (j = 1, . . . , n; h = 1, . . . ,m). The numbers
m, n, p, and q are integers with 0 ≤ n ≤ p, 0 ≤ m ≤ q [46].
Comparing the last two equations, we obtain that

h(r2) =
1
N

1
Γ(N + 1)

G11
11

(
r2

N

∣∣∣∣∣−N − 1
0

)
=

N + 1
N

1(
1 +

r2

N

)N+2
, (46)

where we have used the particular expression of the Meijer’s G-function Gmn
pq (x| . . .)

[46].
Finally, the searched integration measure becomes

dµN (z) =
N + 1
N

d2z

π

1(
1 +

|z|2
N

)N+2
N (|z|2) . (47)

Having in mind that [48]

lim
N→∞

Γ(N + 1− v)
Γ(N + 1)

N−v = 1 , (48)

we can demonstrate that the previously obtained CSs and integration measure for
the MO lead, at the harmonic limit N → ∞ (see, also, Eq. (23)), to the corre-
sponding quantities for HO-1D:

lim
N→∞

|z; [N/2]〉 = |z〉 = e−(1/2)|z|2
∞∑

v=0

zv

√
v!
|v〉 , lim

N→∞
dµN (z) =

d2z

π
(49)

which constitute the first step of the validity of our calculation.
The CSs are normalizable but non-orthogonal, so the scalar product of two CSs

is

〈z;
[
1
2N

]
|z′;

[
1
2N

]
〉 = N (z∗z′)√

N (|z|2)N (|z′|2)
. (50)

The physical utility of the CSs in different applications consists in the calcula-
tions of the expectation (mean) values of a certain physical observableA which char-
acterizes, in our case, the Morse oscillator, with respect to the MO-CSs |z; [N/2]〉.
Generally, the matrix elements in CSs representation are

〈z;
[
1
2N

]
|A|z′;

[
1
2N

]
〉 =

=
[
N (|z|2)N (|z′|2)

]−1/2
[N/2]∑
n,v=0

(z∗)nz′v√
ρ(n;N)ρ(v;N)

〈
[

1
2N

]
, n|A|

[
1
2N

]
, v〉. (51)
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From a practical point of view, the most important operators are those which
are diagonal in the basis |[N/2], v〉. A typical example is the number (particle)
operator v̂,

v̂|[N/2], v〉 = v|[N/2], v〉 . (52)

The matrix elements of their integer powers (s = 1, 2, . . .) are

〈z;
[
1
2N

]
|v̂|z′;

[
1
2N

]
〉 = 1√

N (|z|2)N (|z′|2)

(
x
d
dx

)s

N (x) , (53)

where x = z∗z′.
As regards the integration limits, using the Stirling formula [48], we can demon-

strate that the convergence radius R of the previously defined MO-CSs is

R = lim
v→∞

[ρ(v;N)]1/v = lim
v→∞

[
Nv Γ(v + 1)Γ(N + 1− v)

Γ(N + 1)

]1/v

=∞ , (54)

so, the integrations can be performed over entire z-complex plane.
Moreover, the photon-number distribution of the field in the MO-CSs |z; [N/2]〉,

i.e. the probability of finding v photons in the field state |z; [N/2]〉, is, by definition,

pv

(
z;
[
1
2N

])
= |〈

[
1
2N

]
, v|z;

[
1
2N

]
〉|2 = (|z|2)v

ρ(v;N)N (|z|2) . (55)

Accordingly, the k-order moment is

n
(k)
z;N ≡ 〈z;

[
1
2N

]
|v̂(v̂ − 1) . . . (v̂ − k + 1)|z;

[
1
2N

]
〉 = 1

N (|z|2)

[
d

d(|z|2)

]k

N (|z|2) .
(56)

If N becomes greater, i.e., the number of vibrational bound states becomes
greater, this fact being realized in the case of “heavy” diatomic molecule, the
photon-number distribution function approaches the Poisson distribution:

lim
N→∞

pv (z; [N/2]) = e−|z|2 (|z|2)v
v!

. (57)

The Poisson distribution is characteristic for the HO-1D CSs.
Moreover, the inherent statistical properties of the CSs also follow from calcu-

lating the Mandel parameter defined as [49, 50]

Qz;N =
σz;N

n
(1)
z;N

− 1 =
n

(2)
z;N −

(
n

(1)
z;N

)2

n
(1)
z;N

, (58)

where σz;N is the variance of the number particle operator v̂, calculated in the
coherent state |z; [N/2]〉. If the Mandel parameter Qz;N is > 0, = 0 or < 0, then
the corresponding CSs and statistics are called super-Poissonian, Poissonian or
sub-Poissonian.
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4 Photon-added coherent states

Beginning from the previously defined MO-CSs, using Eq. (34), let us construct
the photon-added coherent states (PACSs), by the multiple action of operator b+
on the usual coherent state [51], i.e.,

|z;
[
1
2N

]
;m〉 =

[
Nm(|z|2)

]−1/2
(b+)m|z;

[
1
2N

]
〉 . (59)

These states depend on extra parameter m, i.e. on the number of added or
excited photons, which influences the statistics of photons, as we shall see below.
Using the results of the previous section, we obtain the following expression:

|z;
[
1
2N

]
;m〉 =

[
Nm(|z|2)N (|z|2)

]−1/2
[N/2]∑
v=0

zv√
ρm(v;N)

|
[
1
2N

]
, v +m〉 , (60)

where we have denoted

ρm(v;N) = Nv+m [Γ(v + 1)]
2 Γ(N + 1− v −m)

Γ(v +m+ 1)Γ(N + 1)

= NmΓ(v + 1)Γ(N + 1− v −m)
Γ(v +m+ 1)Γ(N + 1− v)

ρ(v;N) . (61)

The number of excited photons must fulfill the condition 1 < m < [N/2] − v.
From Eq. (60) we can see that the PACS |z; [N/2];m〉 is a linear combination of all
number states |[N/2], v〉 starting with v = m. In other words, the first m number
states v = 0, 1, . . . , m− 1 are absent from the state |z; [N/2];m〉. Then, the unity
operator in the corresponding Fock subspace F [N/2]

(m) of the finite-dimensional Fock
space F [N/2] is

[N/2]∑
v=0

|
[
1
2N

]
, v +m〉〈

[
1
2N

]
, v +m| = I

(m)
[N/2] . (62)

It is not difficult to verify that the MO-PACSs are normalizable but non orthog-
onal. Despite this fact, they may be used as a basis in the corresponding Hilbert
space of the complex z-functions.
The normalization constant Nm(|z|2) can be written as

Nm(|z|2) =
1

N (|z|2)

[N/2]∑
v=0

(|z|2)v
ρm(v;N)

, (63)

with the evident conditions ρ0(v;N) ≡ ρ(v;N) and N0(|z|2) = 1.
Next, let us determine a positive measure dµ(m)

N (z) from the resolution of unity:∫
dµ(m)

N (z)|z;
[
1
2N

]
;m〉〈z;

[
1
2N

]
;m| = Î

(m)
[N/2]. (64)
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Following the same method as in the previous section, we put that

dµ(m)
N (z) =

d2z

π
Nm(|z|2)N (|z|2)hm(|z|2) . (65)

After the angular integration as in Eq. (42), we obtain the following Stieltjes
moment problem [47]:

2
∫ ∞

0

dr r2v+1hm(r2) = ρm(v;N) (66)

which, after the substitutions r2 = x and v = s− 1 leads to∫ ∞

0

dxxs−1hm(x) =
Nm−1

Γ(N + 1)
1

N−s

[Γ(s)]2 Γ(N + 2−m− s)
Γ(m+ s)

. (67)

By using Eq. (45), we obtain the expression for the function hm(x) and, finally,
the integration measure becomes

dµ(m)
N (z) =

Nm−1

Γ(N + 1)
d2z

π
Nm(|z|2)N (|z|2)G21

22

(
|z|2
N

∣∣∣∣∣m−N − 1; m
0, 0;

)
. (68)

The photon-number distribution for the MO-PACSs can be written as follows:

p(m)
v

(
z;
[
1
2N

])
= |〈

[
1
2N

]
, v|z;

[
1
2N

]
;m〉|2

=
1

Nm(|z|2)

[
Γ(v + 1)

Γ(v −m+ 1)

]2 1
(|z|2)m pv

(
z;
[
1
2N

])
, (69)

which is zero for v < m. In this sense the number of exciting photons evidently
influences the statistics of the photons.
In the manner of the previous section, we can write the matrix elements of a

physical observable A in the MO-PACSs-basis |z; [N/2];m〉 as follows:

〈z;
[
1
2N

]
;m|A|z′;

[
1
2N

]
;m〉 =

[
Nm(|z|2)N (|z|2)Nm(|z′|2)N (|z′|2)

]−1/2

×
[N/2]∑
n,v=0

(z∗)nz′v√
ρm(n;N)ρm(v;N)

〈
[

1
2N

]
, n+m|A|

[
1
2N

]
, v +m〉 , (70)

If A = v̂s (where s is an integer), then the expectation value of this operator is

〈z;
[
1
2N

]
;m|v̂s|z;

[
1
2N

]
;m〉 ≡ 〈v̂s〉(m)

z;[N/2] =

=
[
Nm(|z|2)N (|z|2)

]−1
s∑

v=0

(
s

k

)
ms−k

(
x
d

dx

)k

Nm(x) , (71)

where x = |z|2 and where we have used the Newton binomial development.
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Consequently, by particularizing the exponent s, the Mandel parameter for MO-
PACSs is

Q
(m)
z;N =

σz;N ;m

n
(1)
z;N ;m

− 1 =
x2

(
d
dx

)2

lnNm(x)−m

x
d
dx
lnNm(x) +m

. (72)

The Mandel parameterQ(m)
z;N as a function of |z|2 and with the number of excited

photons m as an extra discrete parameter, may take positive, zero or negative
values. These three situations correspond to the PACSs with super-Poissonian,
Poissonian or sub-Poissonian statistics.

5 Mixed states

It is well known that a very large class of systems in quantum optics can be
described in terms of a density operator which corresponds to a mixed quantum
state of the field. The most usual example of mixed states is the thermal state
(TS). In this context we consider a quantum system which consists of a gas of one-
dimensional non-rotational (J = 0, where J is the rotational quantum number)
Morse oscillators in thermodynamic equilibrium with the reservoir (thermostat) at
temperature T = (kBβ)−1 (where kB is Boltzmann’s constant and β the corre-
sponding temperature constant), which obeys the quantum canonical distribution.
The corresponding normalized density operator is then

ρ
(m)
N =

1

Z
(m)
N

[N/2]∑
v=0

e−βEv+m |
[
1
2N

]
, v +m〉〈

[
1
2N

]
, v +m| , (73)

where Z(m)
N is the normalization constant, i.e. the partition function for a fixed para-

meter N (or, equivalently, for a fixed Child’s parameter K, which characterizes the
maximum number of bound vibrational states for a certain diatomic molecule).
In the next examination of the statistical properties of the mixed (thermal)

states of the MO, it will be very useful to follow the observations and the ansatz of
our previous paper [26].
The equation (14)) can be written as follows:

βEv+m = A
(
v +m+ 1

2

)
− B(v +m)2 = ε0 +A(v +m)− B(v +m)2 , (74)

where we have used the notations

ε0 = β
A

2
, A = βA , B = β

A

N
. (75)

For most of the diatomic molecules B � A. So, the limits of the Child’s para-
meter K = N+1 are very large, e.g., K = 37.1586 for H2 molecule, i.e. for a “light”
molecule, and K = 348.78 for I2, a “heavy” molecule [42]. Consequently, the energy
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exponential can be expanded in the power series as follows:

e−βEv+m = e−ε0e−A(v+m)eB(v+m)2 = e−ε0e−A(v+m)
∞∑

k=0

Bk

k!
(v +m)2k . (76)

Writing

e−A(v+m)(v +m)2k =
(
d
dA

)2k

e−A(v+m) (77)

we finally have

e−βEv+m = e−ε0

∞∑
k=0

Bk

k!

(
d
dA

)2k [
e−A]v+m ≡ e−ε0 exp

[
B
(
d
dA

)2
] [
e−A]v+m

,

(78)
where we have used the last operator identity in order to simplify the writing of such
expressions which contain the exponential expansion with respect to the quantity
B.
The Q-function (or Q-distribution function or Husimi’s function) is defined by

the diagonal elements of the density operator in the CSs basis. Using the previously
indicated ansatz, the Q-function of the MO-PACSs is

Q(m)(|z|2) ≡ 〈z;
[
1
2N

]
;m|ρ(m)

N |z;
[
1
2N

]
;m〉 =

=
e−ε0

Z
(m)
N

exp

[
B
(
d
dA

)2
][
e−Am Nm(|z|2e−A)

Nm(|z|2)

]
. (79)

By imposing that the density operator has to be normalized to unity (which is
equivalent to the assertion that the Q-function is normalized to unity), i.e.,

Trρ(m)
N =

∫
dµ(m)

N 〈z;
[
1
2N

]
;m|ρ(m)

N |z;
[
1
2N

]
;m〉 = 1 , (80)

and using the explicit expressions for Meijer G-functions, we find that the normal-
ization constant, i.e., the statistical sum is

Z
(m)
N =

[N/2]∑
v=0

e−βEv+m . (81)

In addition to this, using the previous ansatz, the partition function of the MO
quantum gas can be also written as

Z
(m)
N = e−ε0 exp

[
B
(
d
dA

)2
][
e−Am 1−

(
e−A)[N/2]+1

1− e−A

]
. (82)

The diagonal expansion of the density operator ρ(m)
N in the MO-PACSs basis is

ρ
(m)
N =

∫
dµ(m)

N |z;
[
1
2N

]
;m〉P (m)

N (|z|2)〈z;
[
1
2N

]
;m| . (83)
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The method of finding the quasi-distribution function (or P -function) follows
some successive steps:
a) We substitute the expression of MO-PACSs, using Eq. (60) and the integra-

tion measure, using Eq. (68).
b) We perform the angular integration and the following function change:

P
(m)
N (|z|2) =

[
G21

22

(
|z|2
N

∣∣∣∣∣m−N − 1; m
0, 0;

)]−1

R
(m)
N (|z|2) . (84)

c) We perform the substitution |z|2 = x and we are lead to the following Stieltjes
problem: ∫ ∞

0

dxxs−1R
(m)
N (x) =

1

Z
(m)
N

Γ(N + 1)
Nm−1

e−βEv+mρm(v;N) . (85)

d) By applying the described ansatz for the exponential function in the r.h.s., i.e.
exp (−βEv+m), we write also the function R

(m)
N (x) in the manner of same ansatz,

as follows [26]:

R
(m)
N (x) =

1

Z
(m)
N

e−ε0 exp

[
B
(
d
dA

)2
] [
e−A(m−1)X

(m)
N (x;A)

]
. (86)

e) So, the Stieltjes moment problem is transferred to the function X
(m)
N (x;A),

i.e., ∫ ∞

0

dxxs−1X
(m)
N (x;A) = 1

(eAN−1)s
[Γ(s)]2 Γ(N + 2−m− s)

Γ(m+ s)
. (87)

f) The mathematical solution can be found in the Ref. [46] and there is

X
(m)
N (|z|2;A) = G21

22

(
eA

N
|z|2

∣∣∣∣∣m−N − 1; m
0, 0;

)
. (88)

Finally, the P -function for MO in the PACSs representation can be symbolically
written in the following manner:

P
(m)
N (|z|2) = 1

Z
(m)
N

e−ε0 exp

[
B
(
d
dA

)2]
e−A(m−1)

G21
22

(
eA

N
|z|2

∣∣∣∣∣m−N − 1; m
0, 0;

)

G21
22

(
|z|2
N

∣∣∣∣∣m−N − 1; m
0, 0;

)
.

(89)
It is not difficult to prove, using Eq. (45), that the P -function is also normalized

to unity: ∫
dµ(m)

N P
(m)
N (|z|2) = 1. (90)
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At the end of this section we point out that, on one hand, all our obtained
results and formulae for PACSs of the MO (generically denoted by F (m)

MO ) lead to
the corresponding results and formulae for ordinary MO-CSs (generically denoted
by FMO), i.e.,

lim
m→0

F (m)
MO = FMO . (91)

On the other hand, the results and formulae for the ordinary MO-CSs, when
N → ∞ (i.e. at the harmonic limit, see Eq. (23)), lead to the corresponding results
and formulae for ordinary HO-1D CSs (generically denoted by FHO):

lim
MO→HO

FMO ≡ lim
N→∞

FMO = FHO . (92)

As an illustration, we only give two examples.
Using the property of Meijer G-functions [46]:

G21
22

(
eA

N
|z|2

∣∣∣∣∣−N − 1; 0
0, 0;

)
= G11

11

(
eA

N
|z|2

∣∣∣∣∣−N − 1
0

)

= Γ(N + 2)
1(

1 +
eA

N
|z|2

)N+2
(93)

and Eq. (89), we obtain the P -function for the ordinary MO-CSs:

lim
m→0

P
(m)
N (|z|2) = 1

ZN
e−ε0 exp

[
B
(
d
dA

)2
]eA

 1 +
|z|2
N

1 +
eA

N
|z|2


N+2 ≡ PN (|z|2) .

(94)
By calculating the harmonic limit of the P -function for the ordinary MO-CSs,

i.e.,

lim
N→∞

PN (|z|2) =

lim
N→∞

1
ZN
e−ε0 lim

N→∞
exp

[
B
(
d
dA

)2
]
lim

N→∞
eA lim

N→∞

 1 +
|z|2
N

1 +
eA

N
|z|2


N+2

(95)

and having in mind the significance of the constants ε0, A and B from Eq. (75), we
obtain that the first limit is (n + 1)−1, the second is equal to unity, the third is
exp (βh̄ω0) and the fourth one is an exponential function of the type exp (a|z|2).
So, finally, we obtain

lim
N→∞

PN (|z|2) =
1
n
e−|z|2/n ≡ PHO(|z|2) , (96)

where we have used the Bose–Einstein mean occupancy

n = [exp(βh̄ω0)− 1]−1
. (97)
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5.1 Thermal expectation values

Once the expression of the P -function is deduced, we can express the thermal ex-
pectation value (thermal average) of an operator (physical observable)A concerning
the MO:

〈A〉(m)
N = Tr(ρ(m)

N A) =
∫
dµ(m)

N (z)P (m)
N (|z|)〈z;

[
1
2N

]
;m|A|z;

[
1
2N

]
;m〉. (98)

As an example of useful operators A we indicate the integer powers of the
number operator v̂s (with s = 1, 2, . . .). This is a diagonal operator in the Fock
basis |[N/2]; v〉 and, finally, their thermal expectation value becomes

〈v̂s〉(m)
N =

1

Z
(m)
N

[N/2]∑
v=0

e−βEv+m(v +m)s . (99)

This expression can be considerably simplified if we use our ansatz referring to
the expression exp (−βEv+m) (see, also, the previous section) and finally, we can
express the appearing sums through the derivatives of lnZ(m)

N . So, we obtain, for
an arbitrary integer s

〈v̂s〉(m)
N = (−1)s 1

Z
(m)
N

(
∂

∂A

)s

Z
(m)
N (100)

and for the first two integer powers respectively

〈v̂〉(m)
N = − ∂

∂A lnZ
(m)
N , (101)

〈v̂2〉(m)
N =

(
∂

∂A lnZ
(m)
N

)2

+
(

∂

∂A

)2

lnZ(m)
N . (102)

With these expectation values we can define and calculate the Mandel parameter
Q

(m)
N (i.e. the thermal analogue of the corresponding function in the MO-PACSs

basis |z; [N/2];m〉):

Q
(m)
N =

(σv̂)
(m)
N

〈v̂〉(m)
N

− 1 = −1−

(
∂

∂A

)2

lnZ(m)
N

∂

∂A lnZ
(m)
N

, (103)

where (σv̂)
(m)
N ≡ 〈v̂2〉(m)

N − (〈v̂〉(m)
N )2 is the thermal variance of the operator v̂.

We observe that the previous results for the case of added photons have the
same aspect as those for the ordinary Klauder–Perelomov CSs for the MO [27],
the difference due to the added photons being included in the expression of the
partition function Z

(m)
N .

Also, using Eq. (98), it is not difficult to deduce all thermal expectation values,
thermodynamical and statistical characteristics of a quantum gas of non-rotational
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one-dimensional Morse oscillators which is in thermodynamic equilibrium with a
reservoir, e.g. the free energy F (m)

N , the internal energy U (m)
N , the entropy S(m)

N , the
molar heat capacity at the constant volume C(m)

V,N and so on. But, this will be the
subject of a forthcomming paper.

6 Conclusions

The Morse oscillator is one of the most realistic and interesting potential models,
not only from the experimental, but also from the theoretical point of view. Due
to the fact that the Morse potential has a finite number of the bounded states,
we cannot construct the Klauder–Perelomov or Gazeau–Klauder coherent states
in stricto senso for this potential because the positivity of the measure is not
everywhere positive [26, 27].
In the present work we have constructed a new set of coherent states (in fact,

the Perelomov’s “generalized coherent states”) for the Morse oscillator (MO-CSs)
and, also, the photon-added coherent states (MO-PACSs), based on the connec-
tion between the SU(2) group model (this is the appropriate and natural dynam-
ical symmetry group for the finite number of bound states [23, 12]) and the one-
dimensional Morse potential. This connection was pointed out earlier by several
authors [17, 32, 33], who have deduced the properties of the raising and lowering
operators b± connected by the angular momentum operators J± (17). By writ-
ing the Morse Hamiltonian as an operator proportional to the anticommutator
[b+, b−]+, we have deduced the expressions of the operators b± as depending on
the dimensionless variable y, which is the first result of our paper.
The MO-PACSs were obtained by multiple action of operator b+ on the MO-

CSs, as usual [51, 52]. The expectation values in the MO-PACSs representation
hold out some possibilities to use these states. Also, the obtained expression for
the Mandel Q-parameter Q(m)

N,z provide information about the inherent properties
of the MO-PACSs |z; [N/2];m〉, i.e., the values of the variable |z| for which these
states exhibit sub-Poissonian, Poissonian or supra-Poissonian statistics.
We have constructed the MO-PACSs representation of the density operator

of the one-dimensional Morse oscillators quantum canonical gas, as well as their
diagonal representation. By applying an original ansatz to write the Morse energy
exponential exp (−βEv+m) [26], we have deduced the corresponding P -function,
which allowed us to calculate the thermal expectation values (thermal averages) for
some specific operators, as well as the thermal analogue of the Mandel parameter.
In this manner, other interesting thermal averages, as free and internal energy,
entropy and molar heat capacity at the constant volume, can be calculated.
Besides the implicit construction of the photon-added coherent states of the

Morse oscillator (Eq. (60)) and examination of their properties, the main results of
this paper are: (a) the expressions of the operators b± as functions of the variable
y (Eqs. (7) and (8)); (b) the expression of the integration measure dµ(m)

N (z) ; (c)
the ansatz for writing the energy exponential (Eqs. (76–78)); (d) the expression of
the P -function (Eq. (89)).
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Due to a series of their properties and potential applications, these states, like
the usual coherent states, are very interesting for examination and for use in quan-
tum optics [43, 53, 54] or in quantum information theory [44]. So, the Morse oscil-
lator remains an interesting subject matter for the future scientific examinations.

Two of the authors (D. P. and I. Z.) wish to thank the Romanian National Council of

Scientific Research for financial support by the Grant CNCSIS A647.
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[22] Gh.E. Drǎgǎnescu and N.M. Avram: Can. J. Phys. 76 (1998) 273.

[23] S.H. Dong: Can. J. Phys. 80 (2002) 129.

[24] H. Fakhri and A. Chenaghlou: Phys.Lett. A 310 (2003) 1.

Czech. J. Phys. 56 (2006) 175



D. Popov, I. Zaharie, and Shi-Hai Dong: Photon-added coherent states . . .

[25] B. Roy and P. Roy: Phys. Lett. A 296 (2002) 187.

[26] D. Popov: Phys. Lett. A 316 (2003) 369.

[27] M. Daoud and D. Popov: Int. J. Mod. Phys. B 18 (2004) 325.

[28] D. Steele, E.R. Lipincott, and J.K. Vanderslice: Rev. Mod. Phys. 34 (1962) 239.

[29] M.S. Child and L. Halonen: Adv. Chem. Phys. 57 (1984) 1.

[30] F. Iachello, S. Oss, and R. Lemus: J. Mol. Spectrosc. 146 (1991) 56; 149 132.
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